

C. U. SHAH UNIVERSITY WADHWAN CITY FACULTY OF SCIENCE

B.Sc.

SEM-I & II

Syllabi (CBCS) of Chemistry

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

COURSE: B.Sc. SUBJECT NAME: Chemistry-I Teaching & Evaluation Scheme:-

SEMESTER: I SUBJECT CODE: BSCCHC101

	Teachi	ng Schen	ne(hrs)	Evaluation Scheme								
					heory	Practical (Marks)						
	Th	Pr	Total	Sessional Ex	kam	Universit	ty Exam					Total
				Marks	Hrs	Marks	Hrs	Total	External	Internal	Total	
ĺ	4	0	4	30	1.5	70	3	100				100

Objectives: -

- The course will help the student to understand internal (atomic and molecular) structure of compound.
- To understand the properties of different types of chemical bonding and in addition to that what are the factors which affect nature of bonding.
- To understand basic characteristic and use of.
- Principles of thermodynamics and application.

Prerequisites:-

• Students should have basic knowledge of chemistry up to 10+2 level.

Course outline:-

Sr.	Course Contents	Hours			
No.					
1	Organic Chemistry:	10			
	Substitution and Elimination Reactions of Alkylhalides				
	 Definition of Substitution and Elimination reactions 				
	 Types of Reactions 				
	 SN¹& SN² Reaction Mechanism with energy diagram 				
	 Substitution Reactions of alkylhalide: Reaction withAqueous KOH or moist 				
	Ag ₂ O, Alkoxides or dry Ag ₂ O, NaSH or KSH, Na ₂ S or K ₂ S, Alcoholic KCN,				
	AgCN, Alcoholic NH ₃ , KNO ₂ or AgNO ₂				

	E1 & E2 Reaction Mechanism					
	 Comparison of Substitution Nucleophilic&Elimination mechanisms. 					
2	Cycloalkanes					
	 IUPAC Nomenclature of Cycloalkanes: monocyclic, bicyclic and tricyclic 					
	systems					
	 Method of Preparation of small ring Cycloalkanes by 					
	1. Fund's Method					
	2. Perkin Method					
	3. Sabatier and Sanderson's Method					
	4. Dieckmann's Method					
	 Physical Properties of Cycloalkanes 					
	 Chemical Properties of Cycloalkanes 					
	1. Substitution Reactions					
	2. Addition Reactions					
	 Baeyer's Strain Theory 					
	 Sacshe-Mohr concept of Strainless rings 					
	 Preparation of Large ring cycloalkanes 					
	1. Thorpe- Ziegler's method					
	2. Acyloin Condensation					
3	Inorganic Chemistry:	06				
	Periodic Properties					
	 Mendeleev's Periodic Law & Modern Periodic Law 					
	 Definitions of Family or Group and Period 					
	 Explanation and General Trends of the following Periodic Properties 					
	1. Atomic and Ionic Radii					
	2. Ionization Potential or Energy					
	3. Electron affinity					
	4. Electronegativity					
	 Pauli's method for the determination of ionic radius of isoelectronic ions 					
	and problems based on it					
4	Bonding and Shapes of Molecules	06				
	 Valence Bond Theory and its limitations 					
	 Hybridization – Concept of hybridization 					
	1. sp {C ₂ H ₂ , BeCl ₂ }					
	2. sp2 {BF ₃ , C ₂ H ₄ }					
	3. sp3 {CH ₄ }					
	4. sp3d {PCl5}					
	5. sp3d2 {SF6}					
	 Stereochemistry of inorganic molecules 					
	1. Sidgwick Powell Rule					
	2. VSEPR Theory					

5	Properties of First Transition Metal Series	08					
	 Introduction, Electronic Configuration and definition 						
	 Reversal of Energies of 3d and 4s orbitals 						
	 Atomic Properties 						
	1. Atomic and Ionic Radii						
	2. Ionization Potential						
	3. Oxidation states and their stability						
	 Magnetic Properties 						
	1. Spectral Properties						
	2. Nonstoichiometric						
	3. Interstitial Compounds						
	 Types of Physical Properties 						
	1. Metallic						
	2. Crystal Structure						
	3. Conductivity						
	4. Catalytic Properties						
	5. Tendency of Formation of Alloys						
6	Physical Chemistry:	11					
	Thermodynamics						
	 Definition of thermodynamics term: system, surroundings 						
	 Types of systems 						
	 Intensive and extensive properties 						
	 State and path functions and their differential 						
	 Thermodynamic processes 						
	 Concept of heat and work 						
	 First Law of Thermodynamics: Statement & Mathematical form 						
	 Definition of internal energy and enthalpy 						
	• Calculation of w, q, $\Delta E \& \Delta H$ for the expansion of ideal gasesunder						
	isothermal and adiabatic conditions for reversible process						
	 Bond dissociation energy and its calculation from thermochemical data 						
	 Work obtained during adiabatic and isothermal change 						
	• Heat capacity: heat capacities at constant volume and pressure and their						
	relationship Cp-Cv=R						
	 Zeroth Law: mathematical treatment of Zeroth law and its limitation and 						
	various statements of law						
	 Joule's law-joule Thomson coefficient and inversion temperature (only 						
	definition)	09					
7							
	Introduction						
	 Types of adsorption 						
	 Uses of adsorption 						
	 Langmuir adsorption isotherms at high & low pressure and its limitations 						

	Freundlich adsorption isotherms and its limitations				
8	Analytical Chemistry:	10			
	Modes of Concentration[Concentration Concept with Numerical]				
	 Preparation of Standard Solutions 				
	1. Equivalent weight of acid and base				
	2. Equivalent weight of acid salt				
	3. Equivalent weight of an ion				
	 Molarity with numerical 				
	 Normality with numerical 				
	 Molality with numerical 				
	 Strength of solutions 				
	 % concentration w/v 				
	 Weight Fraction 				
	 Volume Fraction 				
9	Acids and Bases	10			
	 Degree of hydrolysis (h) 				
	 Derivation of Hydrolysis constant (kh) 				
	 pH of salt of 				
	1. Strong acid-weak base				
	2. Strong base- weak acid				
	3. Weak acid-weak base				
	 Buffers solution- Buffer capacity 				
	 Mechanism of acidic and basic buffer solution 				
	 Numerical – Calculation of pH of Buffer solutions 				
	 Derivation of equation for pH of acidic and basic buffer solution 				

Learning Outcomes:-

The students are able to:

- Analyze the acids and bases.
- Learn the basics of bonding and shapes of molecules.
- Apply thermodynamics to different types of chemical reactions.

Books Recommended:-

Organic Chemistry

- 1. 'A Textbook of Organic Chemistry', K.S. Tewari, N.K.Vishnoi and S.N. Mehrotra.
- 2. 'Organic Chemistry' Morrison and Boyd.
- 3. 'Organic Chemistry (Volume I, II & III)', S.M. Mukherji, S.P. Singh and R.P. Kapoor.
- 4. 'Advanced Organic Chemistry', ArunBahl and B.S.Bahl.

- 5. 'Text Book of Organic Chemistry for BSc students', B.S. Bahl.
- 6. 'Organic Chemistry', T.W. Graham Solomons and Craig B. Fryhle.
- 7. 'Organic Chemistry', I.L.Finar.
- 8. 'Organic Chemistry', Clayden.
- 9. 'Fundamentals of Organic Chemistry', Solomon, John Wiley.
- 10. 'Textbook of Organic Chemistry', P.L. Soni and H.M. Chawla.
- 11. 'March's Advanced Organic Chemistry Reactions, Mechanism and Structure', Michael B Smith and Jerry March.
- 12. 'Reaction Mechanisms and Reagents in Organic Chemistry', Gurudeep R. Chatwal.
- 13. 'Advanced Organic Reaction Mechanism', N. Tewari.

Inorganic Chemistry

- 1. 'Inorganic Chemistry', James E. Huheey (3rd Edition), Harper International SI Edition.
- 2. 'Concise Inorganic Chemistry', J. D. Lee, ELBS.
- 3. 'Magneto Chemistry', Shyamal&Datta.
- 4. 'Advanced Inorganic Chemistry (3rd Edition)', **FA. Cotton and G. Wilkinson**, *Wiley Eastern Pvt. Ltd.*
- 5. 'Valence and Molecular Structure', **Cartmell and Fowels**.
- 6. 'Atomic Structure and Chemical Bonding', Manas Chanda.
- 7. 'Inorganic Chemistry', **SuretkerThate.**
- 8. 'Coordination Chemistry', GurdeepChatwal and M.S Yadav, Himalaya Publishing House.
- 9. 'Basic Inorganic Chemistry', FA. Cotton and G. Wilkinson.
- 10. 'Principles of Inorganic Chemistry', **B.R. Puri, L.R. Sharma & K.C Kalia**, *Vallabh Publications, Delhi*.
- 11. 'Modern Aspects of Inorganic Chemistry', H.J. Emeleus and A.G. Sharpe, Routledge & Kegan Paul Ltd., 39 Store street, London WCIE7DD.

Physical Chemistry

- 1. 'Thermodynamics for Chemists', Samuel Glasstone.
- 2. 'Principles of Physical Chemistry', Puri, Sharma, Pathania.
- 3. 'A Textbook of Physical Chemistry', P. L. Soni, O.P. Dharmarha and U.N. Dash.
- 4. 'Physical Chemistry', Dr. D. R. Pandit, A. R. Rao and Padke.
- 5. 'Progressive Physical Chemistry', **Dr. Snehi**, *Merrut Publications*.
- 6. 'A text book of Physical Chemistry', **Samuel Glasstone.**
- 7. 'Elements of Physical Chemistry', Samuel Glasstone and D lewis.
- 8. 'Introduction to Electrochemistry', **S. Gladstone.**
- 9. 'A text book of Physical Chemistry', **B.K. Sharma.**
- 10. 'Emf',**B.K. Sharma.**

- 11. 'Introduction to Physical Chemistry', Madan and Madan.
- 12. 'Principles of Physical Chemistry', S.H Maron and C.F Prutton.
- 13. 'Advanced Physical Chemistry', J.N Gurtu.
- 14. 'Physical Chemistry',N Kundu and S.K Jain.
- 15. 'Physical Chemistry', KL Kapoor.
- 16. 'Thermodynamics', Gurudeeep Raj.
- 17. 'Comprehensive Physical Chemistry', HemandSnehi.
- 18. 'Elements of Physical Chemistry', B.R Puri, L.R Sharma, M.S Pathania.

Analytical Chemistry

- 1. 'Instrumental Method & Chemical Analysis', **B.K. Sharma.**
- 2. 'Fundamental of analytical chemistry', Skoog& West.
- 3. 'Electrometric Methods of Analysis', Browning.
- 4. 'Water Analysis and Water pollution', V.P. Kudesia.
- 5. 'Analytical Chemistry', Dick.
- 6. 'Inorganic Qualitative Analysis', Vogel and Gehani Parekh.
- 7. 'Principle of Instrumental Analysis', Skoog.
- 8. 'Instrumental Method & Chemical Analysis', ChatwalAnand.
- 9. 'Book for Water Analysis', R. K. Trivedi, V. P. Kudesia.

E-Resources:-

- 1. http://library.thinkquest.org/10429/low/atomic/atomic.html
- 2. http://en.wikipedia.org/wiki/Atom
- 3. http://www.chemguide.co.uk/atoms/properties/gcse.html
- 4. http://en.wikipedia.org/wiki/Chemical bond
- 5. <u>http://www.sparknotes.com/chemistry/bonding/properties/section1.rhtml</u>
- 6. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond2.html</u>
- 7. <u>http://www.chem1.com/acad/webtext/chembond/cb01.html</u>
- 8. http://en.wikipedia.org/wiki/Nuclear chemistry
- 9. http://www.chem.duke.edu/~jds/cruise_chem/nuclear/nuclear.html
- 10. http://library.thinkquest.org/10429/low/nuclear/nuclear.htm
- 11. <u>http://www.visionlearning.com/library/module_viewer.php?mid=59</u>
- 12. http://en.wikipedia.org/wiki/Chemical thermodynamics
- 13. <u>http://www.shodor.org/unchem/advanced/thermo/</u>
- 14. http://www.chem.arizona.edu/~salzmanr/480a/480ants/chemther.html
- 15. http://en.wikipedia.org/wiki/Laws of thermodynamics

FACULTY OF SCIENCE

BSC (CHEMISTRY) - Page 7 of 18

DEPARTMENT OF CHEMISTRY

COURSE: B.Sc. SUBJECT NAME:Chemistry Practical-I

SEMESTER:I SUBJECT CODE: BSCCHP101

Teaching & Evaluation Scheme:-

Teaching Scheme(hrs)			Evaluation Scheme									
				Т	heory			Prac	tical (Marks)			
Th	Pr	Total	Sessional Ex	kam	University Exam			.			Total	
			Marks	Hrs	Marks	Hrs	Total	External	Internal	Total		
0	6	6						30	20	50	50	

Course outline:-

Sr.	Course Contents					
No.						
1	Organic Qualitative Analysis [15 Mono functional Compounds] Compounds containing one functional group such as phenolic, carboxylic acid, ester, amide, nitro, amine, aldehyde, ketone, alcohol, halogen, anilides,					
2	carbohydrate and hydrocarbon. Volumetric Analysis					
	 To prepare solution of acids and bases with definite concentration To prepare a solution by dissolving 'x' gmsNaHCO₃ /Na₂CO₃ in 100 ml solution and determine its concentration in terms of normality and molarity using the given 0.1 M HCl solution 					
	3. To determine the normality, molarity and gms/litre of NaOH and HCl using $0.05M$ Na ₂ CO ₃ solution					
	 To determine the molarity, g/litre and normality of each component in a given mixture of NaHCO₃ and Na₂CO₃ the using 0.1 M HCl solution 					
	 To determine the molarity, g/litre and normality of each component in a mixture of H₂C₂O₄.2H₂O and H₂SO₄ using 0.02 M KMnO₄ and 0.1 M NaOH solution 					
	 To determine the molarity, g/litre and normality of each component in a mixture of H₂C₂O₄.2H₂O and K₂C₂O₄.H₂O using 0.1 M NaOH and 0.02 M KMnO₄ solution 					
	7. To determine the molarity, g/litre and normality of $KMnO_4$ and $FeSO_4.7H_2O$ solution using 0.05 M H ₂ C ₂ O ₄ .2H ₂ O solution					
3	Demonstrative practicals:					

 Calibration of Glassware (Burette & Pipette)
• Crystallization of Organic compounds (3-4 compounds)
Calibration of Thermometer